Inverse Eigenvalue Problems
Constructing Matrices with Prescribed Eigenvalues

N. Jackson

Department of Mathematics
College of the Redwoods

Math 45 Term Project, Fall 2010
Outline

Introduction
 Eigenvalues and Eigenvectors
 Inverse Eigenvalue Problems (IEP’s)

One Simple Algorithm
 Heuvers’ Algorithm
 Proof
 An Example
 Benefits and Drawbacks

Applications
What are Eigenvalues and Eigenvectors?

- An eigenvalue is “any number such that a given square matrix minus that number times the identity matrix has a zero determinant” [2].

\[Ax = \lambda x \]
What are Eigenvalues and Eigenvectors?

- An eigenvalue is “any number such that a given square matrix minus that number times the identity matrix has a zero determinant” [2].
- $Ax = \lambda x$
Inverse Eigenvalue Problems (IEP’s)

- A well-studied yet continually developing branch of Linear Algebra concerning construction of matrices from spectral data.[3]
- Two basic components: solvability and computability.
Inverse Eigenvalue Problems (IEP’s)

- A well-studied yet continually developing branch of Linear Algebra concerning construction of matrices from spectral data.[3]
- Two basic components: solvability and computability.
Konrad Heuvers’ Algorithm
Symmetric Matrices with Prescribed Eigenvalues and Eigenvectors

Let \(\{p_1, p_2, \ldots, p^n\} \) be an arbitrary orthonormal basis for \(\mathbb{R}^n \). These will become the eigenvectors.

Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be \(n \) arbitrary real numbers (the desired eigenvalues) and \(\tau \) be any real number such that \(\tau \leq \lambda_j \) for \(j = 1, 2, \ldots, n \).

Define \(\mu_j = \sqrt{\lambda_j - \tau} \) and \(b_j = \mu_j p_j \), and let \(B \) be the matrix comprised of the column vectors \(b_1, b_2, \ldots b_n \).

Let \(S \) be the matrix \(S = BB^T + \tau l \), a symmetric matrix with the above eigenvectors and eigenvalues.
Konrad Heuvers’ Algorithm
Symmetric Matrices with Prescribed Eigenvalues and Eigenvectors

- Let \(\{ \mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n \} \) be an arbitrary orthonormal basis for \(\mathbb{R}^n \). These will become the eigenvectors.
- Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be \(n \) arbitrary real numbers (the desired eigenvalues) and \(\tau \) be any real number such that \(\tau \leq \lambda_j \) for \(j = 1, 2, \ldots, n \).
- Define \(\mu_j = \sqrt{\lambda_j - \tau} \) and \(b_j = \mu_j \mathbf{p}_j \), and let \(B \) be the matrix comprised of the column vectors \(\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n \).
- Let \(S \) be the matrix \(S = BB^T + \tau I \), a symmetric matrix with the above eigenvectors and eigenvalues.
Konrad Heuvers’ Algorithm
Symmetric Matrices with Prescribed Eigenvalues and Eigenvectors

- Let \(\{p_1, p_2, \ldots, p^n\} \) be an arbitrary orthonormal basis for \(\mathbb{R}^n \). These will become the eigenvectors.

- Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be \(n \) arbitrary real numbers (the desired eigenvalues) and \(\tau \) be any real number such that \(\tau \leq \lambda_j \) for \(j = 1, 2, \ldots, n \).

- Define \(\mu_j = \sqrt{\lambda_j - \tau} \) and \(b_j = \mu_j p_j \), and let \(B \) be the matrix comprised of the column vectors \(b_1, b_2, \ldots, b_n \).

- Let \(S \) be the matrix \(S = BB^T + \tau I \), a symmetric matrix with the above eigenvectors and eigenvalues.
Konrad Heuvers’ Algorithm
Symmetric Matrices with Prescribed Eigenvalues and Eigenvectors

- Let \(\{p_1, p_2, \ldots, p^n\} \) be an arbitrary orthonormal basis for \(\mathbb{R}^n \). These will become the eigenvectors.

- Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be \(n \) arbitrary real numbers (the desired eigenvalues) and \(\tau \) be any real number such that \(\tau \leq \lambda_j \) for \(j = 1, 2, \ldots, n \).

- Define \(\mu_j = \sqrt{\lambda_j - \tau} \) and \(b_j = \mu_j p_j \), and let \(B \) be the matrix comprised of the column vectors \(b_1, b_2, \ldots, b_n \).

- Let \(S \) be the matrix \(S = BB^T + \tau I \), a symmetric matrix with the above eigenvectors and eigenvalues.
Proof of Heuvers’ Algorithm

- The columns of \(B \) are \((b_1, b_2, \ldots, b_n) = (\mu_1 p_1, \mu_2 p_2, \ldots, \mu_n p_n)\).
- The rows of \(B^T \) are of the form \(\mu_i p_i^T \).
- It must be shown that \(Sp_j = \lambda_j p_j \).
Proof of Heuvers’ Algorithm

- The columns of B are
 $$(b_1, b_2, \ldots, b_n) = (\mu_1 p_1, \mu_2 p_2, \ldots, \mu_n p_n).$$
- The rows of B^T are of the form $\mu_i p_i^T$.
- It must be shown that $Sp_j = \lambda_j p_j$.
Proof of Heuvers’ Algorithm

- The columns of B are $(b_1, b_2, \ldots, b_n) = (\mu_1 p_1, \mu_2 p_2, \ldots, \mu_n p_n)$.
- The rows of B^T are of the form $\mu_i p_i^T$.
- It must be shown that $Sp_j = \lambda_j p_j$.
Proof (cont., 2)

\[S p_j = (BB^T + \tau I)p_j \]
\[= BB^T p_j + \tau p_j \]
\[= [\mu_1 p_1, \mu_2 p_2, \ldots, \mu_n p_n] \begin{bmatrix} \mu_1 p_1^T p_j \\ \mu_2 p_2^T p_j \\ \vdots \\ \mu_n p_n^T p_j \end{bmatrix} + \tau p_j \]
Proof

Proof (cont., 3)

- Column vector all zeros except p_j dotted with itself is one.

\[\begin{align*}
\cdots &= [\mu_1p_1, \mu_2p_2, \ldots, \mu_np_n] \\
&\begin{bmatrix}
\mu_1p_1^T p_j \\
\mu_2p_2^T p_j \\
\vdots \\
\mu_np_n^T p_j
\end{bmatrix} + \tau p_j \\
&= [\mu_1p_1, \mu_2p_2, \ldots, \mu_np_n] \\
&\begin{bmatrix}
0 \\
\mu_j \\
\vdots \\
0
\end{bmatrix} + \tau p_j
\end{align*} \]
Proof (cont., 3)

- Column vector all zeros except \(p_j \) dotted with itself is one.

\[
\ldots = [\mu_1 p_1, \mu_2 p_2, \ldots, \mu_n p_n] \begin{bmatrix}
\mu_1 p_j^T p_j \\
\mu_2 p_2^T p_j \\
\vdots \\
\mu_n p_n^T p_j
\end{bmatrix} + \tau p_j
\]

\[
= [\mu_1 p_1, \mu_2 p_2, \ldots, \mu_n p_n] \begin{bmatrix}
0 \\
\mu_j \\
\vdots \\
0
\end{bmatrix} + \tau p_j
\]
Proof (cont., 4)

We have shown that $Sp_j = \lambda_j p_j$, therefore each vector p_j and corresponding scalar λ_j are an eigenvector and eigenvalue for the matrix S.

\[
\begin{align*}
= & \mu_j^2 p_j + \tau p_j \\
= & (\mu_j^2 + \tau)p_j \\
= & \lambda_j p_j
\end{align*}
\]
Proof (cont., 4)

We have shown that $Sp_j = \lambda_j p_j$, therefore each vector p_j and corresponding scalar λ_j are an eigenvector and eigenvalue for the matrix S.

\[
\begin{align*}
\mu_j^2 p_j + \tau p_j &= (\mu_j^2 + \tau)p_j \\
&= \lambda_j p_j
\end{align*}
\]
An Example

- Arbitrary orthonormal basis for \mathbb{R}^2:

$$B_{\mathbb{R}^2} = \left\{ \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}, \begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix} \right\}$$

- For simplicity of computing μ_1 and μ_2, we’ll choose $\lambda_1 = 2$, $\lambda_2 = 5$, and $\tau = 1$.

$$\mu_1 = \sqrt{\lambda_1 - \tau} = \sqrt{2 - 1} = 1$$

$$\mu_2 = \sqrt{\lambda_2 - \tau} = \sqrt{5 - 1} = 2$$
An Example

Arbitrary orthonormal basis for \mathbb{R}^2:

\[
B_{\mathbb{R}^2} = \left\{ \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}, \begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix} \right\}
\]

For simplicity of computing μ_1 and μ_2, we’ll choose $\lambda_1 = 2$, $\lambda_2 = 5$, and $\tau = 1$.

\[
\begin{align*}
\mu_1 &= \sqrt{\lambda_1 - \tau} = \sqrt{2 - 1} = 1 \\
\mu_2 &= \sqrt{\lambda_2 - \tau} = \sqrt{5 - 1} = 2
\end{align*}
\]
An Example

- Arbitrary orthonormal basis for \mathbb{R}^2:

$$\mathcal{B}_{\mathbb{R}^2} = \left\{ \begin{bmatrix} \sqrt{2}/2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2}/2 \end{bmatrix} \right\}$$

- For simplicity of computing μ_1 and μ_2, we’ll choose $\lambda_1 = 2$, $\lambda_2 = 5$, and $\tau = 1$.

$$\begin{align*}
\mu_1 &= \sqrt{\lambda_1 - \tau} = \sqrt{2 - 1} = 1 \\
\mu_2 &= \sqrt{\lambda_2 - \tau} = \sqrt{5 - 1} = 2
\end{align*}$$
Create the matrix B, composed of the columns b_1 and b_2:

$$B = [b_1, b_2]$$

$$= [\mu_1 p_1, \mu_2 p_2]$$

$$= \begin{bmatrix} 1 \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}, 2 \begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2} \\ \sqrt{2}/2 & \sqrt{2} \end{bmatrix}$$
An Example (cont., 2)

Create the matrix B, composed of the columns b_1 and b_2:

$$B = [b_1, b_2]$$

$$= [\mu_1 p_1, \mu_2 p_2]$$

$$= \begin{bmatrix} 1 \begin{bmatrix} \sqrt{2}/2 \end{bmatrix} & 2 \begin{bmatrix} -\sqrt{2}/2 \end{bmatrix} \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2} \\ \sqrt{2}/2 & \sqrt{2} \end{bmatrix}$$
Now we can create our matrix S:

$$S = BB^T + \tau I$$

$$= \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2} \\ \sqrt{2}/2 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2} & \sqrt{2} \end{bmatrix} + 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 5/2 & -3/2 \\ -3/2 & 5/2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7/2 & -3/2 \\ 3/2 & 7/2 \end{bmatrix}$$
An Example (cont., 4)

Check this solution by first finding the eigenvalues of S:

$$
\det(S - \lambda I) = 0
$$

$$
\begin{vmatrix}
\frac{7}{2} - \lambda & -\frac{3}{2} \\
-\frac{3}{2} & \frac{7}{2} - \lambda
\end{vmatrix} = 0
$$

$$(7/2 - \lambda)^2 - (-3/2)^2 = 0$$

$$49/4 - 7\lambda + \lambda^2 - 9/4 = 0$$

$$\lambda^2 - 7\lambda + 10 = 0$$

$$(\lambda - 2)(\lambda - 5) = 0$$

$$\lambda = 2, 5$$
...and then by finding the corresponding eigenvectors:

\[(S - 2I)x = 0\]

\[
\begin{bmatrix}
3/2 & -3/2 \\
-3/2 & 3/2 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
x \\
y \\
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
\end{bmatrix}
\]

\[(S - 5I)x = 0\]

\[
\begin{bmatrix}
-3/2 & -3/2 \\
-3/2 & -3/2 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
x \\
y \\
\end{bmatrix} = \begin{bmatrix}
-1 \\
1 \\
\end{bmatrix}
\]
An Example (cont., 5)

...and then by finding the corresponding eigenvectors:

\[
(S - 2I)x = 0
\]
\[
\begin{bmatrix}
3/2 & -3/2 \\
-3/2 & 3/2
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
\[
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

\[
(S - 5I)x = 0
\]
\[
\begin{bmatrix}
-3/2 & -3/2 \\
-3/2 & -3/2
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
\[
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
1 \\
-1
\end{bmatrix}
\]
Note that the eigenvectors of the S we created with the algorithm are scalar multiples of the eigenvectors we chose beforehand.

Since the nullspaces of $S - 2I$ and $S - 5I$ are both closed under scalar multiplication, the eigenvectors we found confirm the validity of the algorithm.
An Example (cont., 6)

- Note that the eigenvectors of the S we created with the algorithm are scalar multiples of the eigenvectors we chose beforehand.

- Since the nullspaces of $S - 2I$ and $S - 5I$ are both closed under scalar multiplication, the eigenvectors we found confirm the validity of the algorithm.
An Example (cont., 7)

Figure: Eigenvectors of matrix S.
Benefits and Drawbacks of Heuvers’ Algorithm

- Simple to understand and compute.
- Always creates symmetric matrices, must normalize eigenvectors first.
Benefits and Drawbacks of Heuvers’ Algorithm

- Simple to understand and compute.
- Always creates symmetric matrices, must normalize eigenvectors first.
Applications of Inverse Eigenvalue Problems

- Found in applications where goal is finding physical parameters of a system based on known behavior or constructing a system with physical parameters resulting in a desired dynamical behavior [3].
 - Particle physics
 - Molecular spectroscopy
 - Geophysics
Found in applications where goal is finding physical parameters of a system based on known behavior or constructing a system with physical parameters resulting in a desired dynamical behavior [3].

- Particle physics
- Molecular spectroscopy
- Geophysics
Applications of Inverse Eigenvalue Problems

- Found in applications where goal is finding physical parameters of a system based on known behavior or constructing a system with physical parameters resulting in a desired dynamical behavior [3].
 - Particle physics
 - Molecular spectroscopy
 - Geophysics
Applications
of Inverse Eigenvalue Problems

- Found in applications where goal is finding physical parameters of a system based on known behavior or constructing a system with physical parameters resulting in a desired dynamical behavior [3].
 - Particle physics
 - Molecular spectroscopy
 - Geophysics
For Further Reading

G. Strang.
Introduction to Linear Algebra, Fourth Edition.

Trustees of Princeton University
WordNet A Lexical Database for English, 2010
http://wordnetweb.princeton.edu/perl/webwn?
s=eigenvalue
For Further Reading II

M. Chu, G. Golub.
Inverse Eigenvalue Problems: Theory and Applications.
Department of Mathematics, North Carolina State University, 2001
http://www4.ncsu.edu/~mtchu/Research/Lectures/Iep/preface.ps

K. Heuvers.
Symmetric Matrices with Prescribed Eigenvalues and Eigenvectors